

XIV Nextra™ Storage Reinvented

Information Explosion Creates Storage Challenges

How much data does mankind store?

- IDC* says about 281 exabytes in 2007
- By 2011, we'll reach 1,773 exabytes
- That's 600% growth in 4 years

Clients need a <u>simple</u> solution to address modern information storage challenges

*IDC White Paper Sponsored by EMC, "The Diverse and Exploding Digital Universe," March 2008

What if... You had a disk array for today's challenging world?

- You no longer needed to manage spindles?
- You no longer needed tiers of storage to meet SLA's, cost, and Green goals?
- Performance scaled with capacity
- Your storage was self balancing and healing?
- Your storage was designed to accommodate new technology?
- SNAPshots were fast, easy, & affordable
- You could recover from a failed 1TB drive in < 30 minutes!</p>
- You could provision storage in under 1 minute!

Your choice: disks or systems?

Usable	#XIV sys.	Traditional arrays	
TB	Systems	#Disks	#RAID grps
40	1	176	22
80	1	344	43
160	2	680	85
240	3	1,024	128
480	6	2,040	255
960	12	4,080	510

IBM XIV Storage Profile

- XIV was acquired by IBM on December 31, 2007
 - Moshe Yanai XIV CEO (father of EMC's Symmetrix) was appointed an IBM Fellow
- XIV has a unique virtualized grid technology that changes the disk system paradigm: Storage Reinvented
- XIV innovation has been tested and accepted
 - More than 100 systems in production to date
 - 100% of evaluation systems have gone into production at end of testing
 - Product in development for more than 6 years
 - More than 3 years in production
 - More than 50 patents filed
- XIV now part of IBM. For our customers, this means:
 - Next-generation storage product
 - IBM integration, support and service

Key Attributes for Enterprise Information Infrastructure

- Performance Consistent performance under all conditions by eliminating hot spots
- Reliability Business data more critical than ever, with no tolerance for downtime
- Functionality Functions (e.g. replication, thin provisioning) that scale without performance penalties and are inherently built-in to the architecture
- Power and Space Savings- "Green", Minimize power usage, cooling and floor-space
- Manageability Simplicity and ease of use so the data explosion does not require an explosion of work to manage
- Cost Reasonable capital cost and minimal ongoing cost so business can concentrate its efforts on its core and not on IT

Information explosion can compound challenges for the enterprise

Current Enterprise Storage Solutions

Building blocks:

- Disks
- Cache
- Controllers
- Interf PERFORMANCE
- Interd

RELIABILITY SCALABILITY

With this legacy architecture, scalability is achieved by using more powerful (and more expensive) components

Available Solutions Add Cost and Complexity: Creating the Need for ILM

- ILM tries to cope with storage pains by using multi-tiered storage
 - Tiered storage management and data classification is costly and complex
 - Excessive data movements create reliability and performance issues
 - Utilization rates remain low (50% or less), with limited ability to execute thin provisioning

XIV Nextra Architecture

Design principles:

- Massive parallelism
- Granular distribution
- Off-the-shelf components
- Coupled disk, RAM and CPU
- User simplicity

System Description

- 180 disks per rack
 - 12 disks in 2U modules
 - Unified data and interface modules
 - 15 modules per rack
- 1TB disks
- Single rack provides 80TB net capacity
- 120GB of memory per rack (8GB per module)
- Up to 24 4GB FC ports
- Up to 12 iSCSI ports
- 3 UPS modules

Nextra Distribution Algorithm on System Changes

- Data distribution only changes when the system changes
 - Equilibrium is kept when new hardware is added
 - Equilibrium is kept when old hardware is removed
 - Equilibrium is kept after a hardware failure

Nextra Distribution Algorithm on System Changes

- Data distribution only changes when the system changes
 - Equilibrium is kept when new hardware is added
 - Equilibrium is kept when old hardware is removed
 - Equilibrium is kept after a hardware failure

[hardware upgrade]

Nextra Distribution Algorithm on System Changes

Data distribution only changes when the system changes

Nextra Distribution Algorithm

- Each volume is spread across all drives
- Data is "cut" into 1MR "nartitions" and stored on the disks

Nextra's di Nextra disks behave like connected partitions a vessels, as the distribution algorithm aims for constant disk equilibrium.

butes omly

Thus, Nextra's overall disk usage approaches 100% in all usage scenarios.

Performance - Does not degrade over time!

Legacy Architectures

- COMPLEXITY GROWS WITH CAPACITY
- REQUIRES MORE Pre-Planning
- INCREASED RISK to existing production
- REQUIRES MORE monitoring & tuning
- LOWER capacity utilization

XIV Nextra

- COMPLETELY Automated Process
- NO Pre-Planning
- AUTOMATIC load balancing
- HIGHEST capacity utilization

Replacing Outdated Hardware

- New hardware can be added to the system
 - Better performance, less power, more density
- Outdated hardware can be phased out and removed
- All system components are replaced, with:
 - No down time
 - No host configuration
 - No administration effort

SNAPs with No Limitations

Distributed SNAP on each Server. SNAPs mory operations High Performance, unlimited SNAPs provide: High P as fast as on volumes Unlimi Easier Physical Backup to Tape Instant recovery from Logical Backup Host **W** Volume Easy creation of Test Environment Boot-from-SAN with easy rollback File 1 File Easy Data-Mining on Production data Snap Snap File 1 File 2 File 3 Restore Volume from SNAP copy castered value of the copy of a SNAP, each Server simply points. Data Module Operation

Thin Provisioning

- Defining logical volumes bigger than physical capacity
- Installing physical capacity only if and when needed
- Results:
 - Reduced overall direct storage cost
 - Storage expenses spread over time, exploiting price reductions
 - Reduced power, cooling, and space consumption
 - Easier management

Management: Creating a Volume

Green IT: Dramatically Lower Power Consumption

Power Consumption in a 240TB System

- Approximately 1/5 of the power consumption per TB, when compared to an equivalent tier-1 system
- XIV Nextra with 1TB drives;
 EMC DMX-3 with 146GB drives
- Source:

www.emc.com/products/symmetrix/ DMX_series/pdf/C1304_Symmetrix_D MX3_SS_Idv.pdf

Power Consumption per Real Requirements

- Thin provisioning
 - Save 20-50% of storage capacity
- No orphaned space due to virtualization
 - Save 10-20% of storage capacity
- Differential copies for backup instead of full copies
 - Save 15-30% of storage capacity
- Overall, the same requirements are met with storage capacity that is on an order of magnitude less
- Total result: huge power savings

XIV Nextra TCO

- Less storage needed, thanks to:
 - Thin provisioning
 - Management efficiency (no orphaned space)
 - Differential copies
- Reduced capital costs, power, cooling, and space
- Manage the same systems with less staff, due to ease of management
- Provide your organization with better response times
- Easily replace outdated modules with new ones
 - Get more capacity, performance, and power efficiency
 - No administrative effort

The Bottom Line: Real-World Benefits

Performance

 Massive parallelism, spindle utilization, and cache effectiveness boost performance dramatically in all conditions

Reliability

Revolutionary self healing takes minutes, not hours

Functionality

Thin provisioning and replication built into the architecture

Manageability

 Simple, easy management; a logical volume has only two parameters: name and size

Cost

- Off-the-shelf components
- Power saving

Thank You

John Sheehy jes@e-techservices.com

